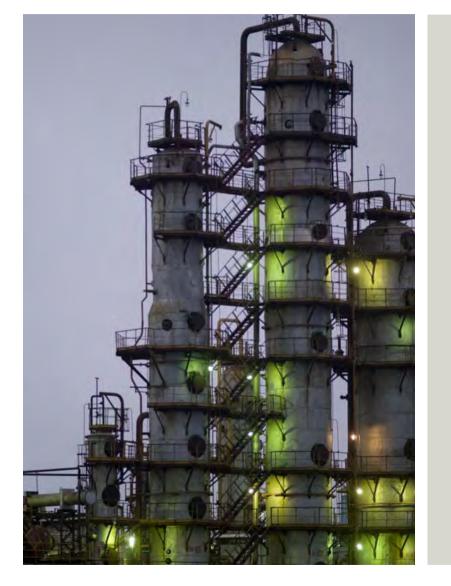
AIChE

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS

Netherlands / Belgium Section



Pressure Relief – Thinking Ahead for a Safe Start-Up Bob Siml

Siemens.com/answers

Disclaimer

The information contained in this presentation represents the current view of the authors at the time of publication.

Process safety management is complex and this document cannot embody all possible scenarios or solutions related to compliance.

This document contains examples for illustration and is for informational purposes only. Siemens makes no warranties, express or implied, in this paper or presentation.

Experience

My background:

37 years research, design, start-up, process improvement with 29 years specialization in relief system design

Investigations related to start-ups:

- Gauge blown out on positive displacement pump (1980)
- Runaway reactor (1981)
- Overfill of ammonia column released 2000 lbs (1982)
- Trays 'blown out" of column (1983)
- Incorrect metallurgy failed in 3 days (1985)
- Failure of 8" line 17,000 lbs vapor (1987)
- et. al.

Siemens Process Safety Group:

- Evaluated
 - > 100,000 Relief systems
 - > 600 Units
 - > 200 Flares
- Offices
 - Houston, TX (USA)
 - Belgium
 - Singapore
 - UAE
 - Bucharest, Romania
 - Rio, Brazil

Incidents that shaped industry

1976 - Seveso, Italy

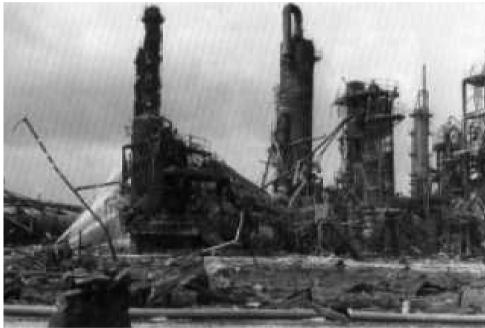


Photo per www.dataforth.com

1984 – Bhopal, India

Photo per Daniel Berehulak/Getty Images

Incidents that shaped industry

1992 - La Mede, France (1992)

Photo per AFP

Incidents that shaped industry

2005 - Texas City Isom Explosion

Photo per Houston Chronicle

It's about more than just compliance...

- Injuries/deaths to friends, coworkers, community
- Litigation
- Damage to the facilities
- Damage to the company's reputation

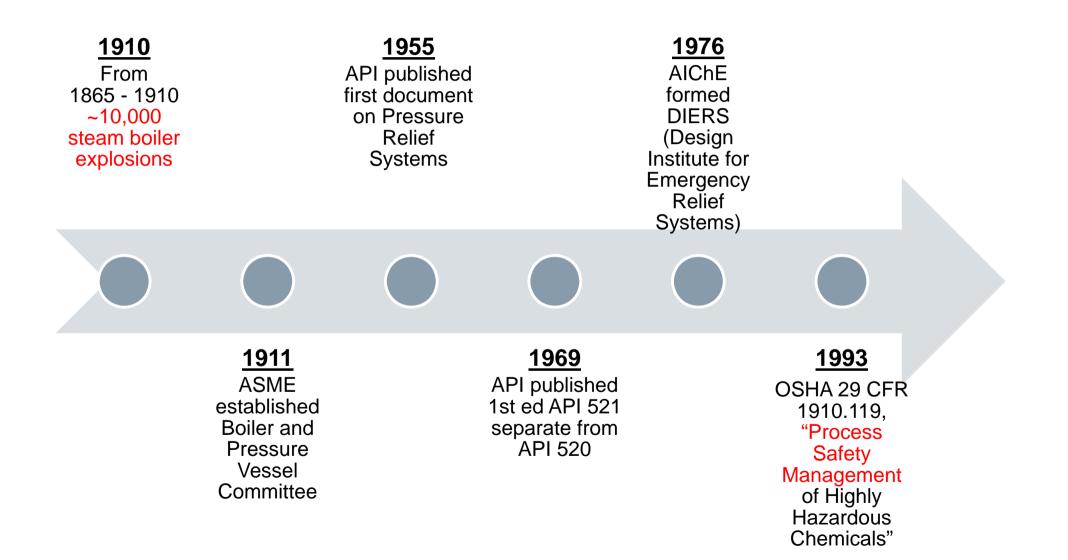
It's about more than just compliance...

- Injuries/deaths to friends, coworkers, community
- Litigation
- Damage to the facilities
- Damage to the company's reputation

It's personal

It's about more than just compliance...

- Injuries/deaths to friends, coworkers, community
- Litigation
- Damage to the facilities
- Damage to the company's reputation

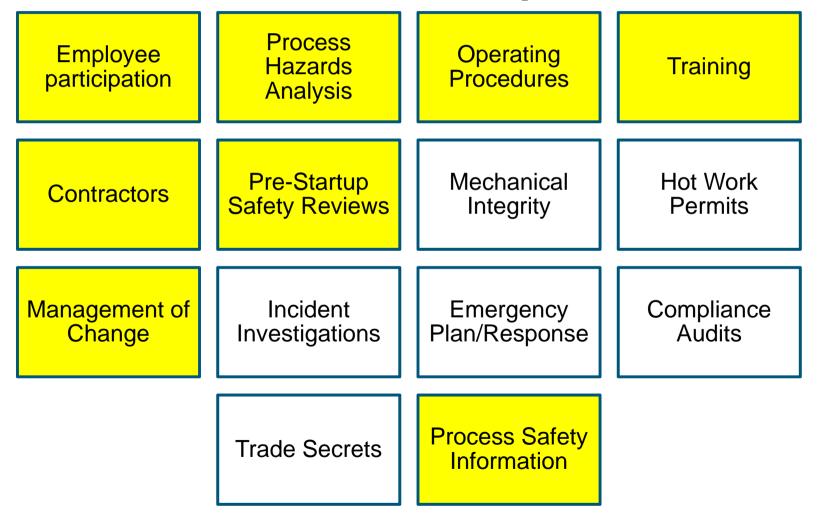

It's personal

It profoundly affects the company

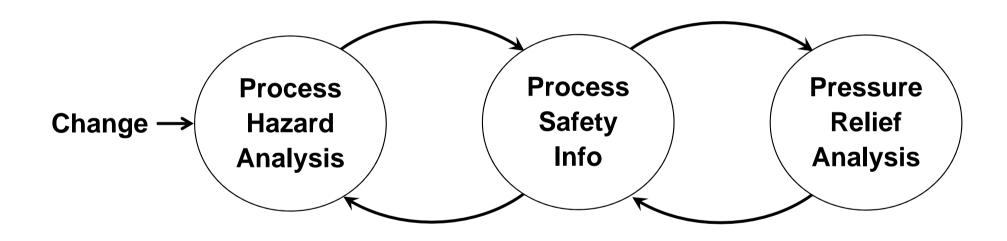
- Union Carbide
- BP (Texas City, TX)
- Bayer (Charleston, WV)
- DuPont (Pasadena, TX)

Historical Perspective - USA

OSHA 29 CFR 1910.119 PSM



14 Elements


Elements involved in start-up

Thinking ahead for a safe start-up

Safety Management System

Changes that trigger an evaluation:

Process

- Changes in feed rate or composition
- New or different chemistry
- New feed, catalyst, or different sequence
- Changes in operating conditions

Procedures

- Changes in operating or maintenance
- Changes in set point (pressure, temperature, flow)
- Change in inventory
- Changes in car seal / lock list

Fixed Equipment

- Installation of a new vessel
- Replace vessel with different dimensions
- Modifications to vessels
- Rerating of vessels (temp or pressure)
- Change in metallurgy
- Change in heat transfer area
- Change in firing rate
- Changes to piping
- Changes in fire rated insulation

Rotating Equipment

- Changes in number / size of impellers
- Change in driver type, Hp, Speed

Instrumentation

- Changes to alarm points.
- Changes in control valve or bypass
- Change in control valve fail position
- Installation of Safety Instrumented Systems

Electrical

- Changes in electrical distribution
- Additional electrical circuits
- New electrical equipment

Relief System

- Changes in relief devices
 - Piping
 - Set pressure
 - Size
 - Type (conventional \rightarrow bellows)
- Change in the disposal system
 - Piping
 - Knockout drums
 - Different flare tip

What is Pressure Relief Analysis?

- Pressure Relief Analysis (PRA) Design, document, and manage pressure relief systems
 - Identify sources of overpressure
 - Quantify relieving loads
 - Ensure proper sizing, selection, and installation
 - Evaluate disposal system (flares, etc.)

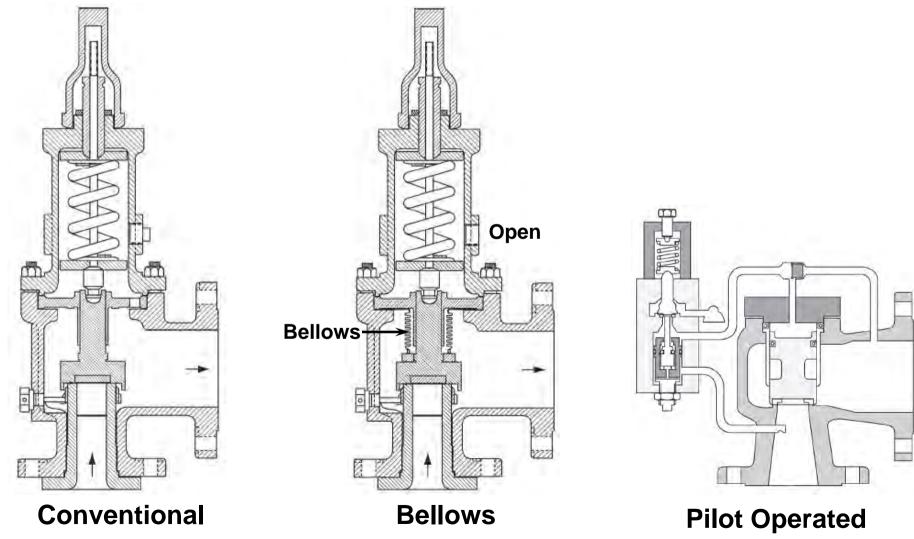
SIEMENS

Ingenuity for life

What is Pressure Relief Analysis?

- Pressure Relief Analysis (PRA) Design, document, and manage pressure relief systems
 - Identify sources of overpressure
 - Quantify relieving loads
 - Ensure proper sizing, selection, and installation
 - Evaluate disposal system (flares, etc.)

Specifically consider normal and non-normal operation including start-up and shutdown


SIEMENS

Ingenuity for life

Examples of Relief Valves

Drawings per API 520

Examples of Flares

Elevated Flares

Steam Assisted

Air Assisted

High Pressure (Sonic)

Examples of Flares

Multi-Stage Ground Flare

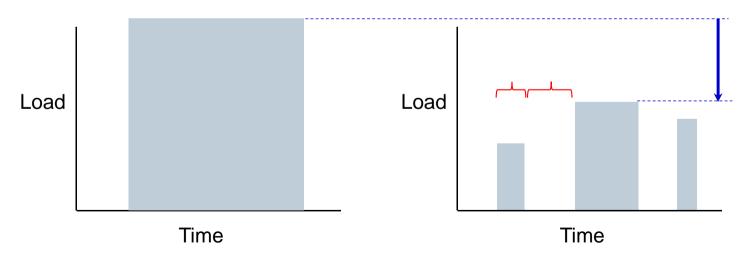
Common Scenarios

1	Blocked outlets	
2	Cooling water failure to condenser	
3	Top tower reflux failure	
4	Sidestream reflux failure	
5	Lean oil failure to absorber	
6	Accumulation of noncondensables	
7	Entrance of highly volatile material	
8	Overfilling	
9	Failure of automatic controls	

10	Abnormal heat or vapor input
11	Internal explosions / transient spikes
12	Chemical reaction
13	Hydraulic expansion
14	Fire
15	Heat transfer equipment failure
16	Power failure
17	Maintenance

The majority of these can occur on start-up!

Additional Options

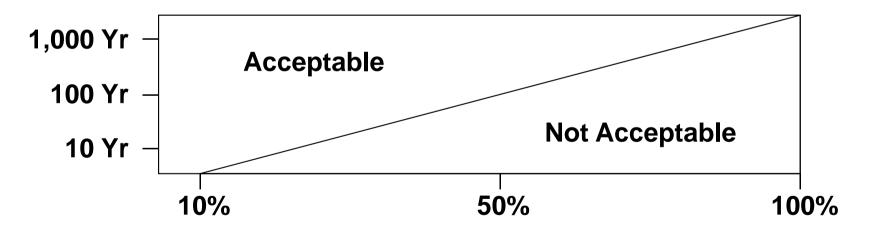


If the relief systems are inadequate, consider:

- Dynamic simulation
- Quantitative risk assessment

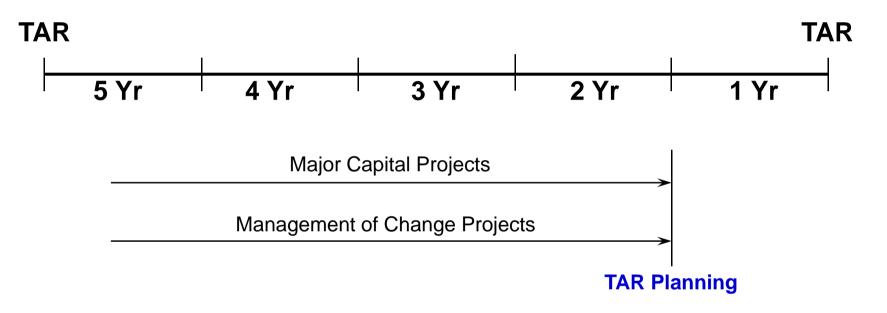
Dynamic Simulation

Take credit for duration of loads and when loads occur



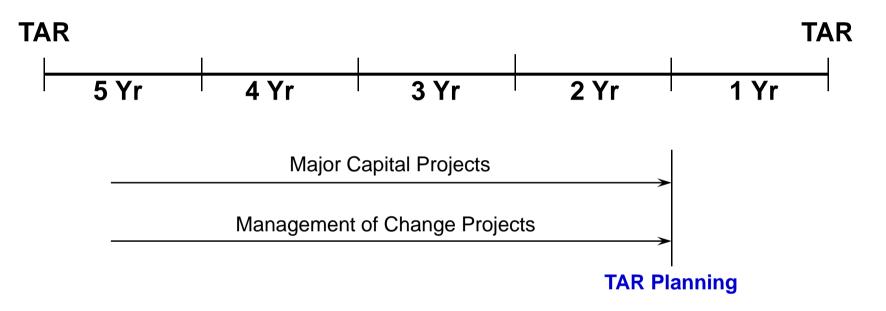
Additional Options

Quantitative Risk Assessment


- Statistical analysis
 - Rules for vessel overpressure based on backpressure
 - Safeguards with probability of failure on demand
- Agreed upon acceptance criteria

Timing

Turnaround Planning



➔ Design must be finished ~ 1 year ahead of the TAR

Timing

Turnaround Planning

Design must be finished ~ 1 year ahead of the TAR You're already behind

Conclusions

- 1) The pressure relief system is the last line of defense.
- 2) It's a fundamental part of the plant design.
- 3) It takes an in-depth understanding of the equipment, process, and modes of operation including start-up and shutdown.
- 4) The effect of changes on the design basis must be considered well in advance of a turnaround.
- 5) Solutions should be creative / innovation to minimize cost.

Questions?

Contact us for more information!

Siemens - Process Safety Consulting (SAF)

<u>United States</u> Michelle Moore 4615 SW Freeway, Suite 900 Houston, TX 77027 1 (800) 658-8809 Info.ogconsulting.energy@siemens.com

Europe Regional Hub Dries Goossens GUIDO GEZELLESTRAAT 123 1654 BEERSEL (HUIZINGEN), België +32 478 32 06 43 Dries.Goossens@siemens.com

Website: www.siemens.com/energy/CES

© Siemens Energy, Inc. 2016 All rights reserved.