

Catalytic Processes Process Safety Requirements

Geert Vercruysse Prof. Process Safety Catholic University of Leuven

Hotta A 1111

33rd Annual European Seminar Breda, 17th April 2018

Contents

- 1. Introduction
- 2. Definitions
- 3. Catalyst Design
 - I. Ex Situ Activation
 - II. In Situ Activation
- 4. Root cause analysis SM/PO incident
- 5. Potential Risk Catalyst Incident
- 6. Process Safety Competency of Management
- 7. Conclusions

- Research started following the explosion at an SM/PO plant which happened in June 2014.
- Video « Onderzoeksraad voor Veiligheid »
- Review of incident database specific for catalytic processes.

The reactor/catalyst is the heart of the process:

- It may be endothermic or exothermic or have little heat effect.
- It determines the separation processes required downstream:
 - Low conversion means large recycles.
 - Low selectivity means additional separation units.
- Take into account deactivation of catalyst during runtime in design:
 - Define Start of Run conditions (SOR)
 - Define End of Run conditions (EOR)

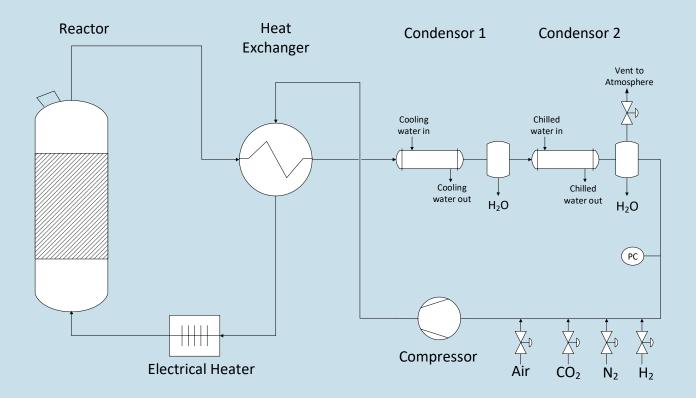
How is a catalyst prepared (generic) :

- Precipitation / impregnation
 - ➢ e.g. Na₂CO₃ + NiCl₂ → NiCO₃ + 2 NaCl
- Washing and drying
 - Removing solution material + excess of water.
- Calcining: Carbonate or nitrate is reformulated to oxide (e.g. with air)
 - > e.g. Ni(NO₃)₂ +O₂ → NiO + (NO + NO₂)
 - ➢ e.g. NiCO₃ + O₂ → NiO + CO₂

How is a catalyst prepared (generic) :

- Calcining is necessary to obtain a more robust catalyst for the next step in process.
- Rating a "shape" of catalyst: by extrusion and/or tabletting.
- Activation of catalyst.
 - > e.g. NiO + H_2 → Ni + H_2O

Two options : ex situ or in situ activation

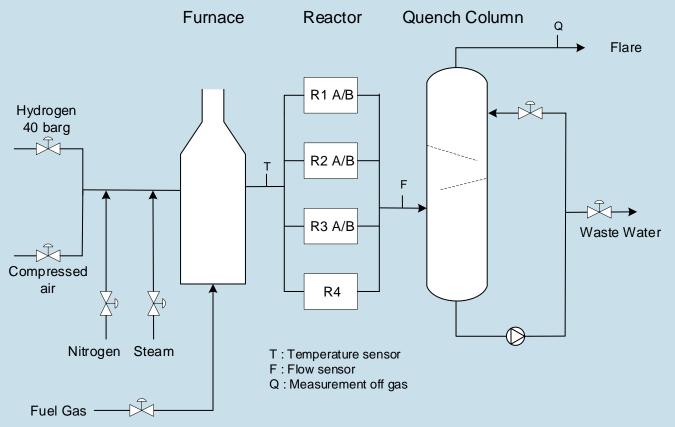


Management to decide based on risk assessment.

Advantages ex situ :

- Within control of supplier Quality certificate.
- Final product is "pyrophoric" metal how to prevent safety issues at client:
 - Mild oxidation before unloading into recipient (drum, big bag).
 - Passivation via a wax layer on top of the catalyst (a coating to prevent possible oxygen ingress).
 - If not possible, unloading in reactor under nitrogen conditions is the only option.
- No provisions to be foreseen for in situ activation.
- See Process Flow Diagram (PFD).

Catalyst Design : PFD ex situ activation



Advantages in situ :

- Within control of producer (supplier should be invited to witness).
- Safer to handle in loading and precommissioning phase:
 - Catalyst loading can be done within "normal" circumstances.
 - Complete load of catalyst can be activated in one action (efficiency gain).
- If possible, combine existing infrastructure to execute activation.
- See Process Flow Diagram (PFD).

Catalyst Design : PFD in situ activation

SM/PO Incident : Root cause analysis & conclusion

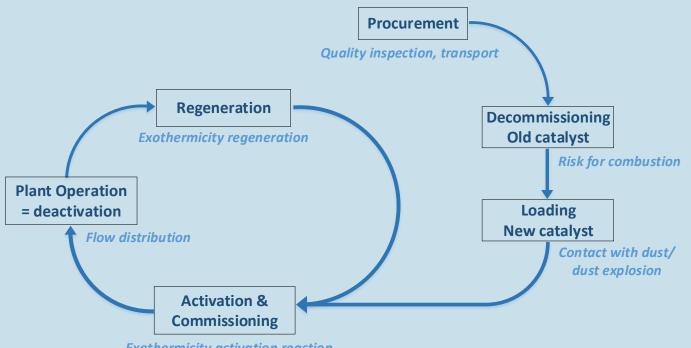
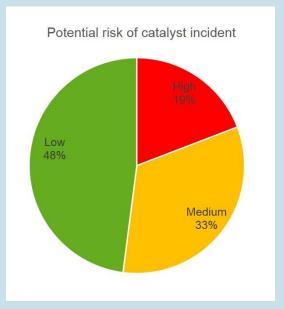

- A non-activated catalyst was introduced in the reactor.
 In situ reduction design was foreseen.
- New catalyst was introduced higher Cr-oxide content then previous one.
- During the heating phase (start of commissioning),
 EB reacted with Cr-oxide initiating the reduction of Cu-oxide with EB (*).
 - $Cr O + C_8H_{10} \rightarrow Cr + H_2O + CO_2(g)$
 - $Cu O + C_8H_{10} \rightarrow Cu + H_2O + CO_2(g)$
- Uncontrolled reaction resulting in an explosive outburst.

Figure 1 – Hydrogenator structure after the explosion.

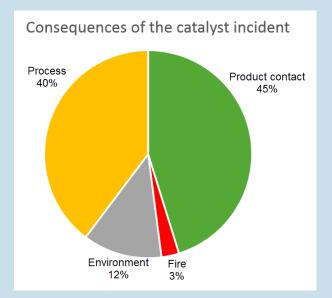

(*) Simplified reaction scheme

Catalyst phases

Exothermicity activation reaction

Case study with 73 catalyst incidents found in the incident database.

The potential risk levels weren't always indicated in the incidents. Some of the potential risks are thus a personal judgement call.

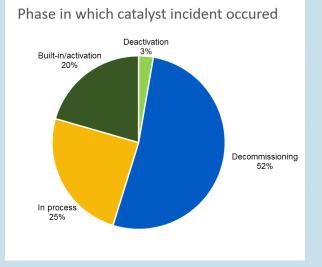

Examples:

During commissioning, catalyst dust in eyes (not expected at this stage of commissioning).

Underestimation of the exothermicity of a new catalyst, start-up procedure is written by trial and error.

Heating of the catalyst during decommissioning caused by insufficient reduction/deactivation.

Case study with 73 catalyst incidents found in the incident database.


Examples :

Environment : Leakage in sieve container where decommissioned catalyst was deposed.

Fire : Hole in suction hose for decommissioning of pyrophoric catalyst. Through this hole, air was sucked inside the hose, leading to a fire.

Process : A change in catalyst causing production of too many by products.

Case study with 73 catalyst incidents found in the incident database.

Examples :

Decommissioning : Dust explosion during suction of catalyst.

In process : Local hotspot around temperature measurement.

Deactivation : Unknown pressure increase during deactivation (new procedure).

- Increase awareness for process safety risks connected to catalysts.
- Checklist for occupational safety regarding the handling of a catalyst.

Always contact vendor prior to start-up!

SHE-review of (de-)commissioning catalyst.

Guidewords: dust, pyrophoric, adsorption energy, SOR-conditions

 No similar procedure where a flammable liquid is used as cooling medium during the activation phase has been found.

 Nevertheless, review of the incident database learns criticality of handling with catalysts.

 Checklist(s) and a good vendor contact should give enough guidance to prevent catastrophic incidents.

Thank you ... for your attention !

