WE MAKE IDEAS WORK
Remnant Life Assessment

Seminar American Institute of Chemical Engineers „Excellence in Process Safety“

Louwman Museum, The Hague | April 23rd 2015
INTRODUCTION

Remnant Life Assessment

Jac de Boer - Senior Consultant Asset Management & Maintenance

Tebodin Consultancy & Engineering

- Established in 1945 in The Hague, the Netherlands
- A network of around 50 offices active in 23 countries
- 4,800 consultants and engineers worldwide
Remnant Life Assessment

AGENDA

- Introduction
- Why RLA
- Goals & Benefits of RLA
- Methodology & Approach
- Degradation Mechanisms
- Lessons learned RLA ME
- New approach
Remnant Life Assessment

WHY RLA

Various RLA drivers:
- Plants age exceeds design life
- Capacity and technical integrity
- Costs per ton product
- Safety and environmental compliance
- Changing surroundings
- Relocation
- New technology available
- Input for a long term replacement planning

General goal:

RLA supports investments decisions on existing plants within operational boundaries and sustained technical integrity.
Goals & benefits of RLA

Goals

- RLA existing plant
- Long term investment plan
- Incorporate in overall AM plan
- Business Case non-existing plant
- Invest-ment?
- Future?

Benefits

- Based on expected degradation and (forecasted) business model
- Quantifiable justification of input for investments
- Structured approach to determine investments
- Better insight in (future) risks
- Check on compliance and obsolescence
- Based on history and forecasted operations
General Approach

- **Kick off & data collection.** Collection using questionnaire, scope definition. *Output: Basis of Study*

- **Virtual assessment:** Estimate current condition of assets based on theoretical Physics-of-failure models

- **Site Visit:** Visual inspection on site. Collection of additional data (inspection documents, failure history, etc.)

- **Remnant life assessment:** Estimation of remnant life based on latest inspection documents. *Output: Report per discipline and final presentation*

- **Life Cycle Costs Analysis:** *(when in scope)* An estimate of replacement costs and operational costs

Project phases:

1. **Kick off & data collection**
2. **Virtual assessment**
3. **Site visit**
4. **Remnant Life Assessment**
Remnant Life Assessment

METHODOLOGY

- Life Cycle Expectations
- FMMEA
- Physics of Failure Models

Virtual Assessment

- Design Data
 - Monitoring data
 - Material (lab) analysis
 - Maintenance and inspection records
 - Operational data

- Site Visit

Remaining Life Assessment

- Life-cycle Cost Analysis
Remnant Life Assessment

METHODOLOGY IN DETAIL

Ref: “A Methodology for Assessing the Remaining Life of Electronic Products
By CALCE University of Maryland USA and the Petroleum Institute, Abu Ddhabi, United Arab Emirates

AICHe 23-04-2015 RLA presentation
Remnant Life Assessment

DEGRADATION MECHANISMS : STATIC
Degradation mechanisms can be determined based on the materials that are used and the feed per asset:

- CO2/H2S Corrosion
- Acid Sour Water Corrosion
- Microbiologically Influenced Corrosion
- Soil Side Corrosion
- CO2 Corrosion
- Atmospheric Storage Tank Bottom Corrosion
- Sulphide Stress Cracking
- HIC/SOHIC Cracking
Local corrosion:
Can be repaired and determines year of inspection.

General corrosion:
Cannot be repaired and determines year of replacement.

Results:
The results of the RLA for static equipment typically are:

- Estimated replacement years
- Advice on repairs
Remnant Life Assessment

DEGRADATION MECHANISMS : CIVIL
Remnant Life Assessment

DEGRADATION MECHANISMS: CIVIL

- Overloading
 - Dynamic Loading
 - Static Loading
- Chemical Degradation
 - Alkali-Silica Reaction (ASR)
 - Chloride Ingress
 - Carbonation
 - Sulphate Attack
Remnant Life Assessment

DEGRADATION MECHANISMS EXAMPLE : CIVIL
Remnant Life Assessment

DEGRADATION MECHANISMS EXAMPLE : CIVIL

• What process liquids and other chemicals are used?
• What is the type of cement?
• Are coatings used?
• How are repairs carried out?
• What is the climate?
• What is the ground water level and what chemicals are in the ground water level?
Remnant Life Assessment

VIRTUAL ASSESSMENT EXAMPLE: CIVIL

Concrete Mixes

<table>
<thead>
<tr>
<th>Alt name</th>
<th>User?</th>
<th>w/cm</th>
<th>SCMs</th>
<th>Inhib.</th>
<th>Barrier</th>
<th>Reinf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>0.42</td>
<td></td>
<td>Ca Nitrite - 5 L/cub. met.</td>
<td>Epoxy Coated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td>Black Steel</td>
<td></td>
</tr>
</tbody>
</table>

n/a indicates that, since the user is specifying the diffusion properties of this mix, this value is not specified.

Diffusion Properties and Service Lives

<table>
<thead>
<tr>
<th>Alt name</th>
<th>D28</th>
<th>m</th>
<th>Ct</th>
<th>Init.</th>
<th>Prop.</th>
<th>Service life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>8.87E-12 m²/m/sec</td>
<td>0.2</td>
<td>1.76 kg/cub. m.</td>
<td>5.5 yrs</td>
<td>20 yrs</td>
<td>25.5 yrs</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>8.87E-12 m²/m/sec</td>
<td>0.2</td>
<td>1.18 kg/cub. m.</td>
<td>4.6 yrs</td>
<td>6 yrs</td>
<td>10.6 yrs</td>
</tr>
</tbody>
</table>

".*" indicates that the user has directly specified this value; "*+" indicates the service life exceeds the study period.
Carried out by discipline expert.

Results:
- Current status of foundations based on visual inspection.
- Feedback on the use of protective coatings and seals.
- Status of repairs that are carried out and advice on repairing.
- Degradation mechanisms are determined.

→ If needed, samples can be collected and analyzed to support the outcome of the virtual assessment.
Remnant Life Assessment

ROTATING
Remnant Life Assessment

LESSONS LEARNED

Tebodin executed several Remnant Life Assessment on complete O&G production facilities in the ME. Here are some of the lessons learned:

• Method used works for static, civil and partly electrical
• Method used works for low production variables
• Rotating and utility systems needs a more empiric approach (too many variables)
• A standard approach and understanding of the projects goals to align input from all disciplines
• A lot of discussions on used norms, guide lines and (prove of) degradation models
• Availability of specialist knowledge is essential
• It is a labor and cost intensive method.
• Why don’t we get the same questions from clients in Europe or North America?
Differences Upstream O&G ME with industries Europe and N. America
 • Also aging assets in Europe and N. America, but
 • Asset age is less homogeneous than ME O&G facilities.
 • For other markets than Upstream O&G, there are many production variables
 • External safety and environmental requirements are different.
 • Some markets operate with less margin and/or shorter investment window.

This requires a more tailored approach for RLA!

In essence:
Determine per system / component the approach and level of detail of the RLA. The efforts and costs of the study should be relevant to the economical impact of the system/ installation.
Remnant Life Assessment

DEVELOP NEW APPROACH

Developed by and with client
Determine project scope

Determine input / output parameters

First check
Compliancy, Sustainability check

Check obsolescence & new technology

Define level of RLA detail per system / component
Criticality

Define level of RLA detail per system / component

Define level of RLA detail per system / component

Detailed scoping RLA
Systems / components

Full RLA on critical components

Empiric RLA. no virtual assessment, expert judgement based + inspections

Simplified RLA
For example NEN2767

AICHe 23-04-2015 RLA presentation
always close
References

• IEC 61508
• API 581 – Risk Based Inspection Technology 2009
• API 650 – Welded Steel Tanks for Oil Storage
• Norsok Standard M-506 – C
• NEN-EN 2767